Motivation
Quantencomputer gelten heute als die Rechenmaschinen der Zukunft. Sie verwenden sog. Qubits statt der herkömmlichen Bits der klassischen Computertechnik. Die besonderen Eigenschaften dieser Qubits erlauben dem Quantencomputer, alle mit den Qubits darstellbaren Zustände gleichzeitig einzunehmen, während herkömmliche Computer pro Rechenschritt nur mit einer der durch die verfügbaren Bits darstellbaren Kombination arbeiten können. Mit Quantencomputern lassen sich so Aufgaben lösen, an denen herkömmliche Computer scheitern. Vorgänge auf molekularer Ebene lassen sich simulieren, so dass z. B. die Wirkungsweise von neuen Wirkstoffen für die Pharmaindustrie vorhergesagt werden kann. Ebenso können Quantencomputer Wege finden, um hocheffiziente Batteriespeicher zu entwickeln, oder komplexe Probleme im Verkehrsmanagement lösen.
Ziele und Vorgehen
Im vorliegenden Verbundprojekt soll der Demonstrator eines Quantencomputers auf der Basis supraleitender Schaltkreise aufgebaut werden und ebenso die Peripherie, die notwendig ist, um den Quantencomputer an herkömmliche Computersysteme anzubinden. Die Arbeiten umfassen die Erforschung von Mikrowellenschaltkreisen zur Kontrolle der Qubits, die Erforschung von Integrationsmethoden für supraleitende Schaltkreise, und reichen bis zur Entwicklung angepasster Compiler und Laufzeitumgebungen für den Quantencomputer. Der zugehörige Quantenprozessor soll mit bis zu 100 Qubits rechnen können und wäre damit in der Lage zehn hoch dreißig Zustände gleichzeitig darstellen zu können (das ist etwa das Zehnmilliardenfache der Anzahl an Sternen, die das Universum schätzungsweise hat).
Innovation und Perspektiven
Ziel der Arbeiten ist es u.a. einen zuverlässigen Betrieb eines solchen Quantencomputers sicherzustellen, und auf der anderen Seite die Peripherie zu schaffen, um die Rechenleistung dieses Computers für eine breite Gruppe von Anwendern per Cloud-Computing zur Verfügung zu stellen.
Projektdetails
Projektlaufzeit:
01.01.2022 - 31.12.2026
Projektvolumen:
44,2 Mio. Euro (zu 86,0 % durch das BMBF gefördert)
Projektkoordination
Prof. Dr. Stefan Filipp
Bayerische Akademie der Wissenschaften
Walther‐Meissner‐Institut für Tieftemperaturforschung
Garching
Projektpartner
Garching b. München / Germany
München / Germany
Erlangen / Germany
Freiburg / Germany
Erlangen / Germany
Erlangen / Germany
Neubiberg / Germany
Frankfurt (Oder) / Germany
München / Germany
München / Germany
Garching / Germany
München / Germany
Jülich / Germany
München / Germany